
AgitarOne JUnit Generator
Prevent Regressions and Cut the Maintenance Cost of Your Java Applications

Automated JUnit Generation — 80% Code Coverage,
or Better
AgitarOne JUnit Generator generates thorough unit-level regression
tests on your existing code base: on legacy Java applications as well
as new code. The JUnit Generator analyzes your entire Java project
and then generates tests that capture, and help you preserve, the
code’s behavior. AgitarOne JUnit Generator is so powerful that it
routinely achieves 80% or better code coverage and, depending on
server confi guration, can generate 250,000 lines of JUnit per hour
or more. The speed of test generation will scale linearly as more
hardware is added. This lets the JUnit Generator deliver tests of
unmatched thoroughness on even the largest projects — faster
than any other approach.

The JUnit tests from AgitarOne JUnit Generator will be very thorough
and will help you detect behavior changes. They are not intended
to be read or enjoyed by humans; they are not intended to do what
hand-crafted JUnit tests do — to improve the design of code as you
write the code. These generated tests help you fi nd regressions
when you change the code, and provide the foundation for safely

Let’s face it — working on a “greenfi eld” software project is more fun than maintaining and enhancing a portfolio of existing applications.
The reality, however, is that development teams must devote most of their resources to managing their portfolio of legacy applications. You’d
like to extend their useful lives while reducing the lifetime cost of ownership. But their code is often buggy, ugly and frequently patched,
and it’s common to have tens of thousands of old Java classes that you cannot change with confi dence because doing so is a major source
of regressions.

With AgitarOne™ JUnit Generator, you can be agile even if your applications are fragile. It enables you to change your Java applications more
quickly and easily to meet changing business needs, helps you prevent regressions, and reduces your overall maintenance costs. With
AgitarOne JUnit Generator, you can achieve the following benefi ts:

• Reduce your maintenance burden by 50% or more. You can get a thorough suite of unit-level regression tests with 80% or better code
coverage — at the push of a button. You can detect regressions soon after they are introduced by running the tests with every build, and
dramatically reduce maintenance costs by fi xing regressions when it’s easiest to do so.

• Fast feedback made easy. AgitarOne JUnit Generator helps you get the fastest possible start with continuous integration and testing. Fast
feedback brings signifi cant improvements in team productivity and the quality of code under development.

• Reduce uncertainty around outsourced projects. You can ensure that your code is built for change and reduce uncertainty around the
quality and maintainability of outsourced applications, by ensuring that they have a suite of unit-level regression tests.

improving the code to cut the cost of its maintenance
and enhancement.

The most thorough and effective unit tests result from a combination
of automation, human insight, and domain expertise. AgitarOne
JUnit Generator automatically creates high-coverage tests at the
push of a button. These tests leverage Agitar’s powerful mocking
technology, an approach that resolves dependencies on components
such as databases, and generates tests for code that would
otherwise be untestable. In cases where the AgitarOne engine does
not have enough information to get full coverage — such as when
some domain-specifi c information or set-up is needed — developers
can help by writing test helper methods. The typical test helper
method is just a few lines of Java code but, once it’s amplifi ed by
AgitarOne’s powerful combinatorial and test generation engine, it will
result in hundreds of lines of high-quality JUnit tests.

This is incredible for legacy code, because this means that you can
get a suite of unit tests that characterize the current behavior of the
code in a matter of hours. And you can immediately put this suite to
work with continuous integration and testing.

Product Overview

FOR LEGACY CODE CHALLENGES

Management Dashboard

Continuous Integration and Test

Code Rules Enforcement Java Code Analysis Engine

AgitarOne JUnit Generator
- Find regressions more easily

- Reduce complexity
- Improve maintainability

AgitarOne JUnit Generator Product Overview

Management Dashboard
AgitarOne JUnit Generator includes a fl exible management
dashboard, producing reports that provide comprehensive
feedback to empower developers and to help manage, track,
and report on your project.

The management dashboard collects and shows key code and
testing metrics for your project, providing continuous visibility
into the testing efforts for both managers and developers.

Testing goals can be defi ned and tracked for the project and for
individual classes, and then summarized for each developer and
for the overall project.

Summary status information is provided at the individual project
level or rolled up over several projects. Key metrics such as the
number of test failures, overall code coverage, total number
of tests, and percentage of classes and methods with tests
are plotted on trend charts for easy analysis. The dashboard’s
e-mail notifi cation system delivers managers and developers all
the key metrics, right to their inbox.

Code Rules
AgitarOne JUnit Generator includes automated enforcement of Java
code against a customizable set of rules, standards, and guidelines.
Code rules are easy to confi gure to support corporate or team
standards, across one or many projects.

Code rules ensure compliance and quickly detect many common
errors that can then be fi xed with minimal effort and risk. When
you want to improve existing applications, the code rules will fl ag
complex code so that you can focus your effort on refactoring the
code that needs it the most.

Continuous Integration and Test (CIT)
AgitarOne JUnit Generator includes built-in support for continuous
integration and testing. This is a proven best practice of running
regression tests and validating the continued correct behavior of the
code after any revisions. AgitarOne’s CIT is based on CruiseControl,
the most popular open-source solution for continuous integration. If
you can build a Java project in Eclipse, you can start doing CIT on it
in less than an hour with AgitarOne JUnit Generator.

Machine-generated JUnit regression tests plus hand-written JUnit
tests give you a far more thorough set of regression tests than

would be practical with hand-written tests alone. But it is still
important to run these as often as possible to get the maximum
benefi t. Following code check-ins, AgitarOne automatically rebuilds
the application, runs the regression suite, and reports back on
the status.

For both new and legacy projects, continuous integration and test
provides rapid feedback to developers, so they can detect and fi x
potential errors and unintended changes in behavior minutes after
they are introduced, instead of passing them on to QA or end users.

AgitarOne Makes Unit Tests a Sustained
Competitive Advantage
AgitarOne means less time tracking down defects in code you wrote
weeks or months ago, and more peace of mind that the code you
check in today is solid.

For distributed teams, whether offshore or outsourced, AgitarOne
JUnit Generator means gaining visibility and control over the quality
of software being created remotely.

From new projects to legacy systems, from local to distributed
teams, AgitarOne JUnit Generator is the best thing you can do to
overcome your Java development challenges.

 The AgitarOne management dashboard provides comprehensive feedback on
key project metrics and helps you track the unit-level quality and status of your
Java project.

“Code without tests is bad code. It doesn’t matter how well written it is; it doesn’t matter how pretty or
object-oriented or well-encapsulated it is. With tests, we can change the behavior of our code quickly and

verifi ably. Without them, we really don’t know if our code is getting better or worse.”

- Michael Feathers
Working Effectively with Legacy Code

JUnit tests that are not used do not add value to any software
development process. It is only when you adopt a consistent
process that you get the most value from your tests. Agitar
recommends fi rst creating a safety net of unit tests for existing
Java code, followed by practicing CIT (continuous integration and
testing) periodically (nightly, weekly, etc.). Then leverage AgitarOne’s
dashboards and alert mechanism to be notifi ed when regressions
are introduced, and immediately fi x the relevant defects and re-run
the tests. Following this entire process on an ongoing basis has
brought meaningful cost reductions and quality improvements to
hundreds of Java development teams, in all industries.

Here are two recommended deployment approaches to help you get
the maximum benefi t from AgitarOne JUnit Generator.

Work Safer — Generate a Safety Net for Your Code

Use AgitarOne JUnit Generator to generate automatically a safety
net of thorough JUnit tests that document the current behavior of
the application. This safety net makes it easier to see the impact
of code changes, which makes changing the code much less risky.
This safety net can be generated with little or no involvement from
the development staff. The generated tests are checked in and run
at desired intervals using AgitarOne JUnit Generator’s continuous

AgitarOne JUnit Generator Deployment Approaches

Java
Code

AgitarOne

JUG

JUnits

JUnits

JUnits

JUnits

Alerts

Dashboard

Reports
CIT

JUnit

Defects/Regressions

AGITARONE DEPLOYMENT PROCESS

integration and testing support. Test failures are analyzed and
developers are notifi ed when they have broken code that used to
work and introduced a regression. This approach brings immediate
benefi ts with minimal effort and no disruption to the daily work of
most of the team.

Work Better — Actively Improve Your Code

Start with the thorough test suite produced by AgitarOne JUnit
Generator. It enables a small “SWAT Team” of an architect, a few lead
developers, or QA engineers to greatly improve the code, improving
the business agility of the entire development organization. The high
out-of-the-box coverage provides the necessary foundation for safe
code changes. You can limit these changes to the identifi cation and
elimination of common problems, such as unhandled exceptions. You
can go further and refactor the code; refactoring takes work but it is
the best way to reduce the complexity and ongoing cost of the code.
Any of this work can be done on an as-needed basis, focused on the
most important and/or fragile parts of the code as they are about to
be modifi ed. As this work results in less fragile code, the overall team
will spend much less time on legacy maintenance and enhancement.
This frees staff for new applications and to start to simplify and
improve other applications.

TECHNOLOGIES

™

To fi nd out more about how AgitarOne can help you produce faster, better, and more fl exible code, visit

www.agitar.com

Worldwide Headquarters Contact Information:

+1 401-572-3150
Agitar Technologies, Inc., 41 Sharpe Drive, Cranston, RI 02920 U.S.A.
www.agitar.com

Copyright © 2009 Agitar Technologies, Inc. All rights reserved.
Agitar, AgitarOne, Agitator, and Software Agitation are trademarks of Agitar Technologies, Inc. Other trademarks,
service marks, trade names, and company logos referenced are the property of their respective owners.

Supported Platforms and System Requirements

Operating Systems: Windows XP Professional, Windows Server 2003, Windows Vista, or Linux with kernel 2.4.22 or later
Browsers: Firefox 1.0 or later, Internet Explorer 6 or later
JDKs: Sun 1.4, 1.5, 1.6; IBM 1.4, 1.5, 1.6
IDEs: Eclipse 3.2, 3.3, or 3.4-compatible IDE, including RAD and RSA 6.0, 7.0, and 7.5, and JBuilder 2007/2008
Frameworks: Supports J2EE 1.4, Java EE 5, and common Java frameworks including Struts, Spring, and Hibernate
Hardware: Do not install AgitarOne JUnit Generator on an old PC you found lying in a closet; buy the hardware needed to ensure good
performance so you do not waste developer time!

 • Fast Intel Pentium D equivalent CPUs (at least two, but it will take good advantage of many more)
 • RAM – 2G or more
 • 200 GB of free disk space

AgitarOne JUnit Generator Feature Summary

Automated JUnit Test Generation
• Complements hand-written JUnit tests
• Creates JUnit tests that provide excellent coverage at the push

of a button
• Automatic extensive mock object generation provides 80% or

better coverage, even on complex code
• Automatic coverage analysis measures test effectiveness
• Automated JUnit test creation can be “trained” by writing simple

Java helper methods
• JUnit generation based on award-winning Agitator®engine

Code-Rule Enforcement
• Automatically detect common coding errors and

standards violations
• Easy to confi gure to match corporate standards
• Integrated with the dashboard for comprehensive reporting

Continuous Integration and Test
• Out-of-the-box automation for continuous development-level builds
• Continuous test execution fi nds and catches regressions quickly
• Based on CruiseControl, the most popular open-source

build system
• Supports any version control system
• Easily integrated into an overall formal build process

Management Dashboard
• Powerful project summary shows testing status at a glance
• Automatic risk assessment helps prioritize high-value candidates for

more testing
• Project summary shows complexity, usage, risk, test quality, coverage,

and test pass/fail status over time
• Ownership identifi es who is working on which classes
• E-mail notifi cation provides immediate feedback of status or failures

